Neural Network Based Modelling of Environmental Variables: A Systematic Approach

نویسندگان

  • H. R. MAIER
  • G. C. DANDY
چکیده

F&forward artificial neural networks (ANNs) that are tralned with the back-propagation algorithm are a useful tool for modelling environmental systems. They have almady been successfully used to model salinity, nutrient concentrations, air pollution, and algal growth. These successes, coupled with their suitability for modellmg complex systems, have resulted in an increase in their popularity and their application in an ever increasing number of ereas. They are generally treated ss black box models that are able to capture underlying relationships when presented with input and output data. In many instancq little consideration is given to potential input data and the internal workings of ANNs. This can result in inferior model performance and an inability to accurately compare the performance of different ANN models. Back-propagation networks employ a modelling philosophy that ls similar to that of statistical methods in the sense that unknown model parametere (i.e., connection weights) are adjusted in order to obtain the best match between a historical set of model inputs and corresponding outputs. Consequently, the principles that are considered good practice in the development of statistical models should be considered. In thii paper, a systematic approach to the development of ANN based forecasting models is presented, whii is intended to act as a guide for potential and current users of feedforward ANNs that are trained with the back-propagation algorithm. Issues that need to be considered in the model development phase are discussed and ways of addressing them presented. The major areas covered include data transformation, the determination of appropriate model inputs, the determination of an appropriate network geometry, the optimisation of connection weights, and validation of model performance. @ 2661 Elsevier Science Ltd. All rights reserved. Keywords-Artificial neural networks, Back-propagation algorithm, Forecasting, Cyanobacteria (blue-green algae), Salinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Fuzzy Neural Network Model for Bankruptcy Prediction of Listed Companies on the Tehran Stock Exchange

Nowadays, prediction of corporate bankruptcy is one of the most important issues which have received great attentions among academia and practitioners. Although several studies have been accomplished in the field of bankruptcy prediction, less attention has been devoted for proposing a systematic approach based on fuzzy neural networks.  The present study proposes fuzzy neural networks to predi...

متن کامل

Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river

ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...

متن کامل

Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach

Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach   Nowadays, environmental risk assessment has been defined as one of the effective in environmental planning and policy making. Considering the position and structure of vegetation on the forest floor, the main role of forest under ca...

متن کامل

APPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS

In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...

متن کامل

Estimation of groundwater level using a hybrid genetic algorithm-neural network

In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...

متن کامل

The Extraction of Influencing Indicators for Scoring of Insurance Companies Branches Based on GMDH Neural Network

O ne of the key topics and the most important tools to determine the strengths, weaknesses, opportunities and threats of each organization and company is the evaluation the performance of organizational activities that rating and ranking follows the internal and external goals. In this regard insurance companies similarly are looking for evaluation of their branches through scoring, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999